Managing Nuclear Waste with Innovative Technologies

Claudia Gasparrini

Share this post

May 22, 2024

Satisfying the world’s ever-increasing demand for secure, 在维持低碳足迹的同时负担得起电力是本世纪最大的挑战之一. 将核裂变与“低碳”技术结合起来,可以以一种优化的方式实现这种急需的“绿色能源”转型.

由于气候变化、能源独立和安全的紧迫挑战,公众对核部署的看法和政府支持正在迅速向积极的方向转变. Each country can choose its own energy mix, but it is important to consider all technologies available today.

Often, an argument against implementing nuclear power as a source of secure, affordable, low-carbon energy is related to the “problem” of how and where to store nuclear waste. 应该指出的是,即使在不采用核能生产能源/电力的国家, 需要核储存设施和核储存库来安全储存放射性废物, 无论是来自核部门还是来自医疗中放射性物质的使用, research and industrial sectors.

将核作为一种能源加以实施,增加了提出一项管理核废料的长期战略的必要性. Spent nuclear fuels (SNF) and certain re-processed, 核电站运行产生的高放废物特别需要处理和长期管理和处置计划. 许多国家在其长期管理战略方面面临困难和争议.

Managing Nuclear Waste

管理SNF和HLW的每一种选择和长期战略都是基于一个国家未来的能源需求和废物类型, volume, and radiological characteristics. 目前,各国可以根据国际条约和规则安全地利用两种选择. Both of them are to be considered and can be implemented in parallel. 关于snf储存库的实施,目前各国普遍需要提出和制定一项统一可靠的战略,以安全和永久地管理snf.

Option 1 – SNF as waste

For over 60 years, 各国在决定如何永久管理和储存高浓缩铀和SNF方面面临挑战. 正在考虑的长期遏制和隔离高放射性废物和SNF的永久解决办法涉及使用深层地质储存库. 芬兰和瑞典已根据地雷储存库概念具体采用和发展了深层地质储存库的备选办法,并正在进行其计划. Other deep geological options and technologies are also being considered, including the use of deep boreholes instead of mined repositories.

设计和建造深层地质储存库是为了通过工程和自然屏障相结合,隔离和遏制高放射性废物和SNF, known as the multi-barrier engineering approach. 几个冗余的工程/天然屏障的协同利用确保了环境免受SNF的无意释放和潜在的运输. At the same time, 它使环境与snf之间的相互作用最小化了几千年.

Option 2 - SNF as an asset and available for reprocessing

Most nuclear power plants in the world nowadays are “thermal" reactors, 由于存在大量的“慢/热”中子,所谓的“可裂变”燃料在哪里被利用. A fissile material is a material that can fission when capturing slow neutrons, 导致反应产生更多的中子用于其他核反应和热/动力学能量. 当今世界上运行的大多数核电站主要依靠铀-235,因为它很容易裂变, whereas uranium-238 is not.

High-level radioactive waste from power plants used for energy production (e.g. SNF) contains large amounts of unused fuel, primarily comprised of unused uranium-238, unused uranium-235, plutonium, fission products and actinides. Produced in the nuclear reactor, 钚和锕系元素具有非常长的“放射性寿命”,是将放射性废物隔离和屏蔽数十万年的主要原因.

Between the 1950s and 1970s, a second class of reactors were developed to better exploit uranium reserves. 第一个产生电力的反应堆是ebr - 1:实验增殖反应堆- 1, a fast reactor that first produced electricity in the United States in 1951. These fast breeder reactors can generate more fuel than they consume, mainly using unused uranium-238 and the byproducts of nuclear reactions as fuel. When targeted by fast neutrons, the so-called radioactive "waste” can be fissioned, generating energy.

One Nuclear Technology Offering Several Solutions

Most nuclear power plants worldwide are currently operating as thermal reactors这主要是由于一些国家在过去几十年里停止了快堆的发展. Many reasons could be linked to the limited success of fast reactors, 从非政策的角度来看,人们可以考虑它们的构造和操作程序, technological challenges, the need for additional ad hoc facilities, the abundance of uranium resources, and the process necessary for fuel recycling (reprocessing). 一些国家已经采用或仍在考虑使用快堆发电或R&D services.

热反应堆在世界范围内的大规模部署可能会推动快速反应堆技术的重新引入,以更好地回收和再利用核材料, 减少将储存在地质储存库中的放射性废物的数量,并尽量减少其密封和隔离所需的时间. It should be noted that both options can be considered, 选项1是对核能发电现状和趋势的责任, while option 2 can be considered by each country according to their needs. In this context, 彩宝网提供指导和咨询服务,以卓越的技术和全面全面的技术方法来评估每个客户的需求.

As nuclear industry experts, we conduct feasibility studies and develop strategic plans for the safe, efficient management of nuclear waste and use of nuclear materials. Our approach is focused on offering sound solutions to complex challenges, with safety and security at the forefront of each assessment.

Headshot of Claudia Gasparrini

About the author

Claudia Gasparrini
克劳迪娅是一名高级顾问,专门从事核材料在裂变中的降解和裂变技术向核聚变的转移,涉及核聚变发电厂的水化学优化和材料的腐蚀和保护.